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The fourth-order anharmonic equation of state combined with the Hugoniot relation is used 
to describe the thermodynamic response of a solid subject to shock-wave compression. There 
is a quasiabsolute agreement in volume-ratio range 12: VH/Vo 2: 0 . 8 for the five materials con
sidered: aluminum, copper, silver, sodium, and periclase. This agreement seems to be in
dependent of the nature and the compressibility of the species. It is poSSible, therefore, to 
calculate the temperature along the obtained curves using the fourth-order anharmonic theory. 
There is a discrepancy of less than 1% between our results and the other published results. 

1. INTRODUCTION 

It has been shownl
-

3 that the fourth-order anhar
monic theory leads to the interpretation of the 
experimental data obtained from shock-wave- com
pression measurements on materials with cubic 
crystal structure. The fourth-order anharmonic 
approximation modifies the Mie-Griineisen equa
tion of state4

: 

(1 ) 

whereP, cP, Y, Us, and Varetheexternalpres
sure, the potential energy of the crystal, Grii
neisen's ratio, the vibrational contribution to the 
internal energy, and the specifiC volume of the 
material, respectively. 

At the fourth order, the free energy is given by 

F= CP(V)+Fs+F*(T) . (2) 

Here (i) the potential energy can be expanded into 
a Taylor series (omitting the terms higher than 
fourth order) with respect to the components of the 
Lagrangian strain tensor A. In this case, CP(V), 
the potential energy, is given by 

CP(V) = CP' + ~'! C~~A",A~+ :; C~~TA",A~AT 
V' 

+ 4! C~81TA",A8ATA., (3) 

using the Voigt notation. The unstrained state is 
denoted by the primes. 

(ii) The vibrational free energy F s is given by 

F s =6J l ~ nwJ + kTln(l-e-~"'j f kT)], 

where wJ are the eigenfrequencies of the solid 
summed over the j vibrational eigenfrequencies, 

(4) 

Pi is the Planck constant divided by 211, k is the 
Boltzmann constant, and T is the absolute tempera
ture. 

In the case of the fourth-order approximation, 

6 

the wJ are of the second order with respect to the 
strain components AiJ; therefore it is sufficient 
to expand F s up to the second order: 

Fs = F~(T) + [( a:r;;) T]' Ai} 

+ 2\ [( a~::aApq) T r AIJA
pq , (5) 

where the derivatives are calculated in the unstrained 
state. 

After Leibfried and Ludwig4 and Thomsen, 5 

[(a:r;;tJ' =-Y;JU~ (6) 

and 

~(a:2~A ) J' = -( :llJ )' U~+ Y;J Y~.(U~ - TC~) , L iJ pq T pq 
(7) 

where U~ and C~ are the internal vibrational energy 
and specific heat at constant volume of the solid 
in the unstrained state . Griineisen's ratio YiJ is 
defined in its tensorial expression as 

I aln(L;2 
Yo= - "2 F jp ~ F.j , (8) 

P. 

if Aij= ~ (FpiFpj-lijj) where F is the tensor gradi
ent of the Lagrangian strain coordinates. 

In Eqs . (6)-(8), the Griineisen approximation is 
applied, which consists of the replacement of the 
eigenfrequencies wj , by their spectral mean W. 

(iii) F*(T) is the anharmonic contribution of the 
free energy in Eq. (2), depending upon the absolute 
temperature only. 

In the case of cubic crystals, the equation of 
state is given by P = - (aF / a Vlr and the Lagrangian 
strain tensor is spherical li. e., Aij=AliiJ' where 
A = ~«V/ V')2/3 - 1) and liiJ is the Kronecker Ii]. 
Using Eq. (2), which has been previously detailed, 
the fourth-order anharmonic equation of stflte can 
be written 
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P(V, T) = - 3K' (V/ VT l / 3 (A - t r A 2 + t A A 3 

- (U'vv'K'){h ' + [A- y ,2 (1- TC:;U~)]A}) , 

where 
(9) 

1 
K' = 32 L C~8 ' 

", , 8 

r - 1 L c' - 3sK' , ",8T' 
a ,8,T 

1 
A = 34K' 6 C~8"" , 

0: , 8, T,I' 

1 (ay )' A= -;;r 6 -"'- , 
3 ", ,8 aA8 

A is the strain derivative of Griineisen' s tensor in the 
unstrained state, and y ' is Griineisen' s ratio in the 
un strained state. 5 

The solution, by iteration, of the set of five 
anharmonic equations5 gives the constants V', K' , 
y', r , and A. These are expressed in terms of 
five experimental data: volume of the zero state, 
Vo (the zero state is defined by P = 0 and T = To 
= 300 OK) ; thermal-expansion coefficient ao; 
adiabatic compressibility K~. ; pressure derivative 
of the isothermal compressibility calculated in the 
zero state, (a~ / ap)T 10 , and temperature deriva
tive of the adiabatic compressibility calculated in 
the zero state, (aKS / aT)p 10 • It has to be empha
sized that V' , K', y' , r, A, and A do not depend 
on the deformed state. However, A depends on 
the second pressure derivative of the isothermal 
compressibility calculated in the zero state, 
(a2KT / ap2)T 10 , which is not known and cannot be 
determined experimentally at the present time . To 
evaluate A, the Hugoniot expression6 might be 
used. The general form of the Hugoniot equation 
is 

(10) 

where Uo, UH, Vo , VH , Po , andPHare specific 
internal energies, volumes, and pressures ahead 
of and behind the shock wave, respectively. Taking 
Po= 0 the Hugoniot equation will be 

(11 ) 

According to the fourth-order anharmonic theory, 
U H may be given by 

U H= rp (V H) + Us (V H, T) . (12) 

Substituting (11) and (12) into Eq. (1) we get 

P = - d rp / + Y(V )['!P (~-1\- rp (VH) + Va J, 
H d V H H 2 H V H 'J V H V H 

(13) 
with 

- :: /H =-3K'( ;,r / 3(A - t rA 2+t AA3) . 

For a cubic crystal one can derive from Eq. (8), . 
using the definitions of y ' and A give n in Eq. (9), 
that the volume dependence of the Griineisen param
eter y is given by 

y(V)=(V/ V,)2 / 3(y' + 3M) . (14) 

At a single Hugoniot point (PH ' V H) Eq. (13) has 
only one unknown A, which is determined thereby. 
Knowing A, Eq. (13) might be rearranged to give 

p. =[ -::' /H + Y(VH)( UO-V~(VH»)] / 

[ 1 - Y(~ H) ( ~: - 1 )]. (15) 

D. COMPARISON OF HUGONIOT CURVES WITH 
FOURTH-ORDER CURVES 

Using Eq. (15), fourth-order curves H4 (P. , V H 

locus) have been calculated for five SOlids, 2 four 
metals (aluminum, copper , silver, sodium) , and 
one mineral (periclase). The calculated curves 
compared with the experimental Hugoniot curves 7 

are shown in Figs. 1(a)-1(e). It can be seen that 
for the five materials considered there is prac
tically no difference between the H4 and the Hugoniot 
,curves in the range of volume ratio of 12: V H/ VO 
2: O. 825. Therefore, within these limits , it seems 
that the agreement between these curves does not 
depend (a) on the nature of the considered materi
als (the results are obviously very similar for 
copper and silver on the one hand, and for peri
clase on the other hand) or (b) on the compressibili
ty of the considered solid (it is clear that the sodi
um is more compressible than the other four 
solids). Finally, a good agreement between theory 
and experience can be observed in a relatively ex
tended pressure range. For instance, there is a 
close fit of the curves up to 300 kbar for aluminum 
and up to 580 kbar for copper and periclase. 

Ill. DEfERMINA~ION OF TEMPERATURE ALONG 
FOURTH-ORDER CURVES 

In the range of agreement between the fourth
order curve and the Hugoniot curve, P 4 satisfies 
Eq. (1); therefore we have 

P = _!iLl (V ) U.(VH, T) (16) 
H dV H + Y H V H 

In the right-hand side of the expression, the ab
solute temperature T figures in Us only. The in
ternal vibrational energy is given by 

U. (T, VH)= T(U/ T)Detrte +i-N. k®D , (17) 

where 3N. is the total number of normal modes, 
® D is the Debye temperature and t N. k® D is the 
limiting expression of UsCT, V H) when T - O. 4 The 
numerical table of Gray, 8 where (U/ T)Detrte VS 

(e D/ T) is given, was used to compute the tempera
ture in the range of agreement of the Hugoniot and 
H4 curves. The results of these calculations are 
show n in Figs. 2(a)-2 (e) and are compared with 
previous data. 6 ,9 


